Physical Mechanism for the Intermediate Characteristic Stellar Mass in the Extremely Metal-poor Environments

نویسندگان

  • TORU TSURIBE
  • KAZUYUKI OMUKAI
چکیده

If a significant fraction of metals is in dust, star-forming cores with metallicity higher than a critical value ∼ 10−6 − 10Z⊙ are able to fragment by dust cooling, thereby producing low-mass cores. Despite being above the critical metallicity, a metallicity range is found to exist around 10−5 −10Z⊙ where low-mass fragmentation is prohibited. In this range, three-body H2 formation starts at low (∼ 100K) temperature and thus the resulting heating causes a dramatic temperature jump, which makes the central part of the star-forming core transiently hydrostatic and thus highly spherical. With little elongation, the core does not experience fragmentation in the subsequent dust-cooling phase. The minimum fragmentation mass is set by the Jeans mass just before the H2 formation heating, and its value can be as high as ∼ 10M⊙. For metallicity higher than ∼ 10Z⊙, H2 formation is almost completed by the dust-surface reaction before the onset of the three-body reaction, and low-mass star formation becomes possible. This mechanism might explain the higher characteristic mass of metal-poor stars than in the solar neighborhood presumed from the statistics of carbon-enhanced stars. Subject headings: hydrodynamics — instabilities — stars: formation, Population II

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stellar Populations in the Central Galaxies of Fossil Groups

It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...

متن کامل

Formation Scenarios for Intermediate-Mass Black Holes

Black holes with hundreds to thousands of solar masses are more massive than can be formed from a single star in the current universe, yet the best candidates for these objects are not located in gas-rich environments where gradual accretion could build up the mass. Three main formation scenarios have been suggested in the literature: that intermediate-mass black holes are the remnants of the f...

متن کامل

Evolution and Yields of Extremely Metal Poor Intermediate Mass Stars

Intermediate mass stellar evolution tracks from the main sequence to the tip of the AGB for five initial masses (2 to 6M⊙) and metallicity Z=0.0001 have been computed. The detailed 1D structure and evolution models include exponential overshooting, mass loss and a detailed nucleosynthesis network with updated nuclear reaction rates. The network includes a two-particle heavy neutron sink for app...

متن کامل

The Second Stars

The ejecta of the first probably very massive stars polluted the Big Bang primordial element mix with the first heavier elements. The resulting ultra metal-poor abundance distribution provided the initial conditions for the second stars of a wide range of initial masses reaching down to intermediate and low masses. The importance of these second stars for understanding the origin of the element...

متن کامل

Relativistic Stellar Models with Quadratic Equation of State

In this paper, we have obtained and presented new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution and a gravitational potential Z(x) that depends on an adjustable parameter. The quadratic equation of state based on Feroze and Siddiqui viewpoint is used for the matter distribution. The new solutions can be written in terms of elementar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008